李健

2018-09-06 08:21

一、基本资料

姓名:李健

职称/学位:副教授/博士

研究方向:神经动力学、机器人、深度强化学习

籍贯:河南潢川

邮箱:lijcit@xynu.edu.cn; 1511895678@qq.com

 

二、个人简历

李健,副教授,博士。主要从事神经动力学、机器人、深度强化学习方向研究,主持国家自然科学青年基金1项,主持博士后科学基金1项,参与国家自然科学基金面上项目1项,以第一作者发表SCI论文15篇,其中中科院1区论文6篇,授权发明专利1项。

 

三、学习工作经历

20109—20146 海南大学 计算机科学与技术 本科

20149—20196 中山大学 计算机科学与技术/信息与通信工程 硕博连读

20197月至今 信阳师范学院伟德betvlctor1946  讲师/副教授

 

四、项目成果

1.机械臂控制中不同层时变问题求解的神经动力学研究(编号:62006205),国家自然科学基金,2021/01-2013/1230万,主持

2.中国博士后科学基金第3批特别资助(站前),动态环境中强时空约束的舰载机保障作业调度研究(项目编号:2021TQ0299),2021.1.1-2022.12.3118万,主持

3.基于高精度时间离散公式与神经动力学的未来时变问题求解,国家自然科学基金, 2020/01-2013/1260万,参与

 

五、发表论文

[1] Jian Li, Yang Shi, Hejun Xuan. Unified model solving nine types of time-varying problems in the frame of zeroing neural network, IEEE Transactions on Neural Networks and Learning System, 2021, 32(5): 1896-1905.(中科院1区)

[2] Jian Li, Xinhui Zhu, Yang Shi, Jing Wang, Huaping Guo. Real-time robot manipulator tracking control as multilayered time-varying problem, Applied Mathematical Modelling 96 (2021) 355–366. (中科院1区)

[3] Jian Li, Yunong Zhang, Mingzhi Mao. Continuous and discrete zeroing neural network for different-level dynamic linear system with robot manipulator control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50: 4633-4642. (中科院1区)

[4] Jian Li, Mingzhi Mao, Yunong Zhang, Binbin Qiu. Different-level algorithms for control of robotic systems, Applied Mathematical Modelling, 2020, 77: 922-933. (中科院1区)

[5] Jian Li, Ruiling Yao, Yan Feng, Shasha Wang, Xinhui Zhu. Zeroing neural network for solving hybrid multilayered time-varying linear system, IEEE Access, 2020, 8: 199406-199414.(中科院2区)

[6] Jian Li, Yunong Zhang, Mingzhi Mao. General square-pattern discretization formulas via second-order derivative elimination for zeroing neural network illustrated by future optimization, IEEE Transactions on Neural Networks and Learning System, 2019, 30(3): 891-901.(中科院1区)

[7] Jian Li, Yunong Zhang, Mingzhi Mao. Five-instant type discrete-time ZND solving discrete time-varying linear system, division and quadratic programming, Neurocomputing, 2019, 331: 323-335. (中科院2区)

[8] Jian Li, Mingzhi Mao, Frank Uhlig, Yunong Zhang. A 5-instant finite difference formula to find discrete time-varying generalized matrix inverses, matrix inverses, and scalar reciprocals, Numerical Algorithms, 2019, 81: 609-629. (中科院2区)

[9] Jian Li, Yunong Zhang, Shuai Li, Mingzhi Mao. New discretization formula based zeroing dynamics for real-time tracking control of serial and parallel manipulators, IEEE Transactions on Industrial Informatics, 2018, 14(8): 3416-3425. (中科院1区)

[10] Jian Li, Mingzhi Mao, Frank Uhlig, Yunong Zhang. Z-type neural-dynamics for time-varying nonlinear optimization under a linear equality constraint with robot application, Journal of Computational and Applied Mathematics, 2018, 327: 155-166. (中科院2区)

[11] Jian Li, Mingzhi Mao, Yunong Zhang, Dechao Chen, Yonghua Yin. ZD, ZG and IOL controllers and comparisons for nonlinear system output tracking with DBZ problem conquered in different relative-degree cases, Asian Journal of Control, 2017, 19(4): 1482-1495. (中科院3区)

[12] Jian Li, Mingzhi Mao, Yunong Zhang. Simpler ZD-achieving controller for chaotic systems synchronization with parameter perturbation, model uncertainty and external disturbance as compared with other controllers, Optik, 2017, 131: 364-373. (中科院4区)

[13] Jian Li, Yang Shi, Yange Sun, Jianwei Fan, Mohammed Aquil Mirza, Noise-tolerant zeroing neural dynamics for solving hybrid multilayered time-varying linear equation system, Security and Communication Networks, 2022, 6040463, pp. 1-13. (中科院4区)

[14] Jian Li, Jianwei Fan, Xinhui Zhu, Yange Sun, Yanling Li, Stability-constraint-free solutions to solve time-varying linear equation system, IEEE Access, 2022, 10: 34228-34235. (中科院3区)

[15] Jian Li, Shuang Pan, Jingjing Chen, Wenjing Sun, Qing Chen, Zhipeng Fu, Time-varying matrix inversion based on Lagrange-type finite difference, IAENG International Journal of Applied Mathematics, 2022, 52(3): 1-10.EI收录)

 

六、专利成果

[1] 李健、朱鑫辉、孙艳歌、张莉、王敬,一种基于多层结构的冗余度机械臂多任务控制方法,专利号:ZL202110349034120224

 



 


 

上一条:张莉

下一条:段雪源

教师风采